
Development Environment

DII COE I&RTS: Rev 3.0 January 1997 9-1

9. Development Environment

The DII COE imposes very few requirements on the process or tools developers use to
design and implement software. The COE concentrates on the end product and how it will
integrate in with the overall system. This approach provides the flexibility to allow
developers to conform to their internal development process requirements. However,
developers are expected to use good software engineering practices and development
tools to ensure robust products. The purpose of this chapter is to suggest certain
development practices that will reduce integration problems, and the impact of one
segment on another.

Developers may select compilers, debuggers, linkers, editors, CASE tools, etc. that are
most suitable for their development environment. The compilers and linkers selected must
be compatible with the products supplied by the hardware vendors and must not require
any special products for other developers to acquire in order to use the segments
produced.

Coding Conventions

January 1997 DII COE I&RTS: Rev 3.09-2

9.1 Coding Conventions

This section describes required coding standards for segments submitted to DISA,
whether they are COE-component segments, or mission-application segments that are part
of a DISA COE-based system. These standards are not intended to restrict software
development, and for that reason the requirements given are brief.

There are two important points to keep in mind with respect to this chapter. First, the DII
COE states requirements for the purpose of ensuring and preserving the integrity of the
runtime environment. Therefore, the DII COE is mostly concerned with executables that
are produced, and not the process used to create them. The COE relies upon other
standards (e.g., MIL-STD 2167A, MIL-STD 495, ISO 9000) and practices levied by the
cognizant program managers to ensure good programming practices and a quality
product. However, certain standards are required because some of the segments produced
contain APIs that developers will use to build other segments upon.

Secondly, the DII COE is programming-language neutral and does not stipulate what
programming language to use to write segments. Such decisions are the prerogative of the
cognizant program manager. The COE must support segments written in Ada, in support
of DOD policy, and C, because of the use of COTS products, and therefore both are
addressed in this chapter. Any statements in this chapter, or elsewhere in the I&RTS,
which appear to state a preference for one language over another are unintentional.

Because most developers are using either C/C++ or Ada, COE-component segments that
provide APIs shall be written in either C/C++ or Ada. Availability of APIs for both C and
Ada is highly desirable, but will be driven by service and agency requirements. Consult
with the DII COE Chief Engineer for availability of multi-language APIs, for requirements
to produce multi-language APIs for a particular segment, or for support for languages
other than C/C++ and Ada.

9.1.1 Language Independent Conventions

The following suggestions and requirements are language independent.

• Code delivered to DISA shall not be compiled with debug options enabled. If
available, a utility such as the Unix strip command shall be run on executables to
minimize the disk space required.

• Segments should use shared libraries where practical to reduce runtime memory

requirements. Segments with public APIs implemented as shared libraries shall also be
delivered as static libraries to make debugging easier for developers who need to use
the APIs.

• Developers may use GUI (Graphical User Interface) tools to build interfaces, but

developer’s should select tools that are portable across platforms. Segments built with
such tools shall use resource files for window behavior rather than embedded code,

Coding Conventions

DII COE I&RTS: Rev 3.0 January 1997 9-3

and must not require any runtime licenses unless approved by the DII COE Chief
Engineer for COE segments, or by the cognizant program manager for application
segments.

• Developers should run all modules through a tool such as lint to detect potential

coding errors prior to compiling.

• Developers should run all modules through commercially available tools to detect as

many runtime errors as possible (e.g., “memory leaks”).

• Developers should periodically profile segments by using tools that do a runtime

analysis of module performance (% CPU utilization, number of times a function is
invoked, amount of time spent in a function, LAN loading analysis, etc.).

• Developers should create a test suite for automatically exercising the segment,

especially inter-segment interfaces and APIs, and periodically run the tests to perform
regression testing. A formal test plan should be created and submitted with the
segment.

• Segments with public APIs shall be delivered with a test suite that covers all public

APIs provided by the segment.

• Developers should use a tool such as imake for generating makefiles that are as

portable as possible. If available, the POSIX.2 make utility should be used.

• Developers should use automated tools such as CVS, RCS, or other commercially

available product to perform configuration management tasks. Segment developers are
responsible for configuration control of their own products. The I&RTS does not
proscribe a CM plan, but assumes the developer has one as part of good programming
practices.

• Developers should periodically rebuild segments from scratch to ensure that all pieces,

including data files, are under proper configuration management control.

• Developers should track problem reports in an automated database. This will simplify
reporting known problems when the segment is submitted to the cognizant SSA.

• Shareware and freeware products should generally be avoided. Products such as the
gnu software should be used with care because the licensing agreement may require
distribution of source code and may thus have adverse impact on product releasability.

• Developers shall separate COTS products from mission-application software because
the COTS software may already be available in the DII COE inventory.

Coding Conventions

January 1997 DII COE I&RTS: Rev 3.09-4

9.1.2 Ada

Ada generally requires stipulating fewer requirements than other languages because the
syntax and semantics of the language are designed to enforce good programming practices
at the compiler level. For example, Ada enforces strong typing so that many common
coding errors are caught at compile time.

Ada bindings in particular pose specific areas of concern.

• Developers should design software so that routines that require binding to other
languages are isolated into a small number of easily separated modules. This will make
maintenance of Ada bindings easier, and make it easier to identify segments that
require long-term support for Ada bindings.

• Developers who create Ada bindings to other segments or COTS products within the

COE should submit them with their segment so that other developers may reuse them.

• Developers who require Ada bindings to COTS products within the COE (e.g., Motif,

DCE) should use commercially available bindings whenever they exist, and whenever
it is economically feasible to do so.

• Developers shall separate submission of their segment and any bindings they create.

The segment will be delivered to operational sites while the bindings will be distributed
only to other developers.

• Developers should use Ada95 as the language of choice over earlier versions of Ada.

9.1.3 C/C++

This subsection contains requirements and suggestions that are specific to programming in
C or C++.

• Developers should use ANSI C instead of Kernighan and Ritchie C because of the
strong typing capabilities of ANSI C.

• Segments that have public APIs written in C shall support ANSI C function
prototypes.

• Segments that have public APIs shall support linking with C++ modules. This is done
by bracketing function definitions with

Coding Conventions

DII COE I&RTS: Rev 3.0 January 1997 9-5

#ifdef __cplusplus
extern "C" {
#endif

function prototypes

#ifdef _cplusplus
}
#endif

• Segments written in C that have public APIs shall handle the condition where a header
file is included twice. This is accomplished by bracketing the header file with
#ifndef and #endif as follows:

#ifndef MYHEADER
#define MYHEADER

header file declarations

#endif

Development Directory Structure

January 1997 DII COE I&RTS: Rev 3.09-6

9.2 Development Directory Structure

Developers may use whatever directory structure is most appropriate for their
development process. The installation tools will enforce the logical structure presented in
Chapter 5. However, the COE development tools allow segments under development to
be located arbitrarily on the disk. For example,

VerifySeg -p /home5/test/dev MySeg

indicates that the segment to be validated, MySeg, is located in the directory
/home5/test/dev. Similarly,

TestInstall -p /home5/test/dev MySeg

allows the segment to be temporarily installed from this directory for testing and
debugging.

Figure 9-1 shows an example segment directory structure. It has the advantage that it
separates public and private code into different subdirectories. MySeg/lib contains
public libraries provided by the segment, while MySeg/include contains public header
(C/C++) or package definition (Ada) files The src/PrivLib subdirectory should
contain library modules that are private to the segment. Similarly, the subdirectory
src/PrivInclude contains interface files that are private to the segment.

PrivInclude PrivLib ...

MySeg

Scripts SegDescrip data bin src include lib

Figure 9-1: Example Development Directory Structure

This directory structure is not mandatory, except when source code is delivered to DISA;
otherwise, it represents only one recommended approach. When source code is delivered
to DISA, is shall be in the src, include, and lib directories as appropriate.

Development Directory Structure

DII COE I&RTS: Rev 3.0 January 1997 9-7

An advantage of structuring directories as shown in Figure 9-1 is that delivering software
to other developers means that only one directory must be deleted: the src directory.
Delivering the software to an operational site means that only three directories need to be
deleted: include, lib (unless shared libraries are being used), and src. It is a simple
matter to create automated scripts that can generate tapes for both types of deliveries. An
additional benefit is that public and private files are separated in the directory structure for
easier management and distribution.

Separating Out the Development Environment

January 1997 DII COE I&RTS: Rev 3.09-8

9.3 Separating Out the Development Environment

The COE requires that a strict separation be maintained between the runtime environment
and the development environment. This is true regardless of the target platform operating
system (e.g., NT, Unix). For the NT1 world, most development tools are structured in
such a way that the development environment is self-contained in an integrated
environment that is accessible from a GUI. For example, both Microsoft and Borland
provide an integrated development environment for C++ that provides icon and menu
access to compilers, linkers, editors, and other development tools. Both products provide
a “directory browser” for identifying the location of source code and libraries, and the
target directory for object code and executables. Moreover, they provide an interface for
defining parameters such as compiler flags and preserve the settings and all other build-
related information in a “project file.”

For Unix, however, integrated development environments are less common place. The
next subsection describes an approach for preserving the separation of development and
runtime Unix environments through the use of scripts. The concept is to put all runtime
information into one script, and all development information in a separate script. While the
approach between NT and Unix is considerably different, the COE stipulates a
fundamental requirement to preserve a separation between the runtime and development
environment. Developers shall preserve this separation regardless of the target operating
system environment.

9.3.1 Unix Development Scripts

In the Unix environment, it is often convenient to locate development scripts in the same
subdirectory as the runtime scripts (e.g., subdirectory Scripts). The recommended
convention is to name development scripts with a .dev extension to distinguish them
from runtime environment scripts. The .runtime extension can not be used since this
has a special meaning within the COE as explained in Chapter 5.

Developers may define environment variables for locating source code directories,
compilers, tools, and libraries. In addition, aliases can be defined as shortcuts for
frequently executed commands. None of these examples are allowed in the runtime
environment and hence must be placed in a development script such as .cshrc.dev.

9.3.2 NT2 and Unix Recommendations

The following suggestions are made:

1 The DII COE for NT is presently available only on PC platforms. Comments in this chapter should be
understood in the context of Windows NT for PC-based platforms, even though the NT operating system
is available on other commercial platforms. DII COE support for non-PC platforms is dependent upon
requirements from the DII COE community.
2 ibid.

Separating Out the Development Environment

DII COE I&RTS: Rev 3.0 January 1997 9-9

• Define environment variables relative to segprefix_HOME where segprefix is the
segment prefix. This allows segments to be easily relocated on the disk. (This
suggestion is applicable to both Unix and NT.)

• Use environment variables to define where to place libraries and executables. (Unix

only. For NT, use facilities provided by the development tools for locating libraries
and executables.)

• Extend the path environment variable through concatenation - that is

set path = ($path $TOOLS)

where $TOOLS is the location of the COE development tools (e.g., /h/TOOLS).
(Unix only. For NT, use facilities provided by the development tools for locating
tools.)

• Use the same script for all supported platforms through use of the environment
variables MACHINE_CPU and MACHINE_OS. (Unix only. For NT, use facilities
provided by the development tools for creating project files that allow multi-platform
development support.)

9.3.3 Test Account Group

COE-component segment developers typically create servers that will be used by other
segments in the operational system. However, the developers and the SSA need to be able
to test the COE-component segments when there may not be available any mission-
application segments, or even an account group segment, that will launch the servers and
exercise the API interfaces.

To aid the SSA and other segment developers, it is recommended that COE-component
segment developers create and deliver with the segment the following:

• A test account group segment. This segment should establish the environment that
the COE segment is expected to run within, and contain details for how to correctly
launch the services. This provides a way for the SSA to test the delivered segments,
and it provides an example for system engineers and designers how the segment was
intended to be used.

• A “Run” script. Chapter 5 indicates that account group segments must contain an

executable that will launch the application. The test segment should also contain such
an executable. This encapsulates in one place the information required to properly
establish the runtime environment to launch the server, and it also identifies the
sequence and command-line parameters, if any, required to launch the services.

• Documentation. The test segment and “Run” script should be documented to assist

the system integrator, potential system designers, and the SSA.

Separating Out the Development Environment

January 1997 DII COE I&RTS: Rev 3.09-10

The test segment and “Run” script should be packaged and delivered separately from the
actual COE-component segment. This will ensure that the test segment does not
inadvertently get delivered to an operational site, or get confused with account group
segments that are intended to be part of the end system.

Private and Public Files

DII COE I&RTS: Rev 3.0 January 1997 9-11

9.4 Private and Public Files

The software engineering principles of data abstraction and data hiding are important in
designing segments. Data abstraction refers to the process of abstracting structures so
that subscriber segments need not know low-level details of how data is physically
organized. Data hiding refers to hiding data elements that subscriber segments do not
need, or are not authorized, to directly access. Proper implementation of these two design
principles prevents segments from affecting each other through inadvertent side effects
and isolates one segment from changes in another.

It is also important to hide low-level functions and only provide access to segment
functionality through a carefully controlled interface, the API. It is neither feasible nor
desirable to make all functions in a segment available due to the sheer number of functions
involved, and because changing a function that is being used directly by another developer
may have significant impact.

These concepts are implemented in Ada through the package construct. C, however, does
not contain an equivalent capability. The closest approximation in C is the static directive
that makes a function visible only within the scope of the file containing the function
definition. To compensate for structural inadequacies in C, developers must segregate
software into public and private files, and into public and private directories. Since header
files (e.g., .h files) are used to define the interface to C functions, the concept is that
header files should be segregated into public and private files while public and private
directories are used to provide the same concept for libraries. Moreover, segregation into
distinct directories makes it easier to enforce the separation.

Developer’s Toolkit

January 1997 DII COE I&RTS: Rev 3.09-12

9.5 Developer’s Toolkit

The Developer’s Toolkit contains the components necessary for creating segments that
use COE components. The toolkit does not need to be in segment format (it is not
installed at operational sites), but it is a set of files and directories that may be downloaded
electronically from the online library. Developer’s may also contact the DII COE
Configuration Management Department to receive the toolkit on magnetic media in
relative “tar” format.

The Developer’s Toolkit is distributed separately from the target COE-based system.
However, components from the operational system (COE-component segments, shared
libraries, etc.) are required for development. These may be obtained electronically from
the online library, or on magnetic media from the DII COE Configuration Management
Department. Classified or very large components will be distributed to developers via
magnetic media. The toolkit does not duplicate any components available in the runtime
system because this would create configuration management problems in ensuring that
developers do not receive two different versions of the same module.

As distributed, the toolkit contains the following:

• API libraries and object code
• C header files for public APIs written in C
• Ada package definitions for APIs written in Ada
• Ada bindings for selected APIs
• API documentation in HTML format3

• API documentation in Unix man page format
• COE development tools (see Appendix C)
• Conventions for creating APIs

The toolkit does not contain any products that require a license (compilers, editors,
RDBMS, etc.). It is the developer’s responsibility to acquire these items as needed.

Developers may install the toolkit on the disk in whatever directories are desired. The
standard location for toolkit components is:

C public header files /h/COE/include
Ada public package definitions /h/COE/include
public libraries /h/COE/lib
executables /h/TOOLS/bin
Unix man pages /h/TOOLS/man
HTML documentation /h/TOOLS/HTML

3 Documentation is delivered in only one format. The goal is to use HTML for programmer documentation
because this is suitable for both NT and Unix platforms. However, some documentation is still in Unix
man page format.

Developer’s Toolkit

DII COE I&RTS: Rev 3.0 January 1997 9-13

Certain tools from Appendix C are useful for both the development environment and the
runtime environment. These tools are delivered with the operational system and are
located under /h/COE/bin.

Developers should include /h/TOOLS/bin in the path environment variable for their
development environment. /h/TOOLS/man should also be included in the search path
for Unix man pages. The web browser should be set to find HTML documentation under
/h/TOOLS/HTML.

Developers are encouraged to submit tools to the COE community for inclusion in the
developer’s toolkit. All tools submitted must be license and royalty free, and must include
a man page for online documentation. Developers wishing to release source code for their
contributed tools may do so, and the source code for the tool will be organized under the
/h/TOOLS/src directory.

Developer’s Toolkit

January 1997 DII COE I&RTS: Rev 3.09-14

This page is intentionally blank.

